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This mini-review discusses agent-based models as modeling techniques for

studying pattern formation of multi-cellular systems in biology. We introduce

and compare different agent-based model frameworks with respect to spatial

representation, microenvironment, intracellular and extracellular reactions,

cellular properties, implementation, and practical use. The guiding criteria

for the considered selection of agent-based model frameworks are that they

are actively maintained, well documented, and provide a model development

workflow.
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1 Introduction

Interacting cellular biological systems, such as bacterial communities, tissues,

organoids, exhibit a plethora of phenomena, which are often not easy to understand

intuitively. To explore and analyse cellular systems mathematical equations and/or

computer simulations can be powerful tools. Because the fundamental building blocks

or units of biological systems are cells, agent-based models with cells as the individual

agents are natural simulation tools to study such systems. Pattern formation in cellular

systems requires interactions between cells, the exchange of information, and, in case of

self-organisation, that cells respond in a sufficiently non-linear manner, including

feedback loops [1, 2]. Exchange of information can occur in a multitude of different

ways and on different length scales: (short range) mechanical forces [3] and cellular

junctions [4], (medium range) diffusing chemicals [5], and (long range) hormones [6].

Due to the individual cell based perspective agent-based models make it easy to

implement these interactions and also the signal processing and response of the cells.

In this mini-review we consider agent-based software frameworks with individual cells as

agents, which are actively maintained and developed, provide documentation beyond a

minimum, and provide a model development workflow1.

Traditionally, pattern formation in biology is studied using Partial Differential

Equations (PDEs) that model continuous distribution of cells [7–10]. There is a

wealth of literature onhow to solve coupled non-linear PDEs, estimate the parameters
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from data, and how to explore their behavior, e.g., sensitivity

analysis, bifurcation analysis, see, e.g., [11–16]. PDEs are

powerful tools, however, in a PDE cells have no spatial

extension, ignoring the underlying cellular spatial structure.

Although it is possible in a PDE to distinguish between the

inside of the cells and their micro-environment, there is no

unique or canonical way to handle, e.g., cell proliferation,

differentiation, internal cell structure and other properties of

the cells, which may be relevant for the questions at hand. This

problem can be solved by cellular Automata (CA) [17] which

consist of a regular grid with a finite number of states at each grid

point and rules, determining how to update them accordingly. A

further development of CA introduced ABMs [18–20] where the

modeling approach is to handle cells as individual agents with

rules, potentially with an internal structure and/or moving in

space. By using coarse-graining or homogenization techniques

one could derive a system of coupled PDEs from an ABM; there

is, however, no unique way to go from a PDE to an ABM [21].

2 Agent-based models

An ABM is a collection of autonomous agents with a

predefined set of rules, which depend on the existing state of

the agent and external factors [22–25]. The rules can be discrete

following logical if-else statements, continuous, i.e., Ordinary

Differential Equations (ODEs) for intra-cellular reactions or a

combination of both. Also, graphs, neural networks and other

intricate algorithms can be implemented [26]. Nevertheless, one

usually strives to employ the most simple set of rules sufficient to

accurately describe the complexity of the desired system.

Compared to macroscopic PDE models, ABMs are considered

microscopic modeling, since they deal with agents directly and

are thus more common in a bottom-up approach [27]. ABMs

should not be seen as a technologically distinct toolset but rather

as a mindset for researchers by modeling complex systems from

the perspective of individual constituents.

Historically, precursors to ABMs were cellular Automata,

which were developed by [17]. They reached widespread

recognition even in the general public with the introduction

of Conway’s “Game of Life” [28, 29]. Not long after, the first

ABMs were being envisioned to study a biological system [18].

Up until the break of the century, ABMs were used in many fields

of research such as modeling human crowd stampedes [30], bird

flocks [19] or the prediction of financial markets [31]. With the

rapidly growing accessibility and power of modern computer

hardware, the popularity of ABMs kept on increasing, where

tools such as NanoHUB [32] or the Systems Biology Markup

Language (SBML) [33] further helped to share computational

models between researchers. In order to study complex

phenomena such as pattern formation ABMs must be able to

capture cell-cell communication and cellular response

mechanisms [10, 34–37]. In the next section we will compare

the available ABM frameworks and discuss how they cover

different cellular properties.

2.1 Comparison of ABMs

The effort of writing efficient solving algorithms and data

structures in a usable fashion is considerable. Therefore, agent-

based model frameworks (ABMFs) have emerged that define a

certain workflow and implement a set of features, so that users of

the frameworks can focus on their research question instead of

having to spend a significant amount of time for design and

implementation.

The majority of cell-agent-based model frameworks

(CABMFs) evolved as generalizations of solutions to specific

problems. BSim [38] was specifically designed to model bacterial

populations and has been used to study gene regulatory control

[39] and bacterial biofilms [40]. Chaste2 was designed as a

Cancer, Heart and Soft Tissue Environment [41] and has been

used in studying growth of epithelial monolayers [42].

CompuCell3D [43] originated from CompuCell [44], which

was one of the first frameworks created and originally used to

model only simple reaction-diffusion (RD) systems but was since

extended considerably to cover a wider range of topics such as

angiogenesis [45], cancer [46] and tissue engineering [47].

EPISIM was used to understand how varying proportions of

T Cells emerge in different vertebrate taxa [48]. Morpheus [49]

was applied to self-organization in neural stem cell divisions in

adult zebrafish [50] and polarization of the multiciliated

planarian epidermis [51]. MultiCellSim [52] resulted from the

in-depth analysis of cell-cell communication and was since

applied to Immuno-Oncology [53]. PhysiCell [54] is mainly

used modeling cancer and tumor dynamics [55, 56]. TiSim/

CellSys [57] was applied to liver regeneration processes [58].

VirtualLeaf [59] was specifically designed for modeling plants

and emphasizes intercellular connections and details of the

mechanical properties of the cell wall. Table 1 displays general

characteristics of these modeling frameworks.

2.1.1 Spatial representation
A key distinction between ABMs is given by the difference of

the spatial representation of cells and chemicals. ABMs can be

separated into lattice-based and lattice-free, the former meaning

that cells can only migrate between predefined lattice nodes,

while the later permits free movement of cells in a given domain.

Frameworks such as Chaste, PhysiCell, TiSim/CellSys and

VirtualLeaf utilize off-lattice motion. Chaste3, CompuCell3D

2 We only consider here the cell-based part of the chaste software
environment.

3 Cell-based Chaste supports off-lattice as well as on-lattice
representations.
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and Morpheus utilize lattice-based methods for cell-migration.

This also means that no particular cellular shape is modeled

explicitly, but rather cells follow rules (often potentials) to

determine their respective quantity on lattice points. The

disadvantage of the lattice-based approach is that it is limited

in the spatial resolution, but in turn as an advantage it can yield

considerable performance improvements. Off-lattice models

often take a cell centre [60] approach meaning, a cell is

defined by a single location vector and a shape (such as

sphere, ellipsoid or cylinder) that governs interactions. BSim

additionally has the ability to represent microbes as meshed

objects thus offering a much higher resolution at micro-scale

although at increased computational cost. Another less common

modeling choice is to use a vertex model [61, 62] that represents

each cell by a polygon, determined by a number of vertices, which

can be subject to external forces, pressure, friction, adhesion,

chemotaxis and other external and internal contributing factors.

Lattice-bound models can utilize different discretizations such as

regular Cartesian meshes, hexagonal or triangulated ones. Most

of the presented frameworks in Table 1 can be used to simulate

two-dimensional (2D) as well as three-dimensional (3D)

scenarios. The Cellular Potts Model, also known as Glazier-

Graner-Hogeweg (GGH) model [63, 64], is a common choice

for many frameworks. Typically, in a Cellular Potts Model a

Hamiltonian is formulated which describes the

phenomenological “energy” of a given configuration of the

system on a Euclidean lattice. Subsequently, the systems is

evolved by minimizing the energy. LBIBCell modifies the

classical Cellular Potts Model (CPM) approach by

representing cells as evolving polygons with the immersed

boundary method and thus obtains off-lattice cellular

representations [65, 66].

2.1.2 External microenvironment
Transport processes of chemicals typically involve

numerically solving (convection-) diffusion equations (67) and

(68) with cell to extracellular matrix interaction nodes at the

positions of the cellular agents on a (often euclidean) mesh. One

exception is presented by VirtualLeaf where intracellular

compartments are connected via membranes to adjacent cells

and model transport through membrane-potentials [59]. Many

ABMs utilize PDEs to model intracellular or extracellular

transport processes such as convection and diffusion and

allow for custom forms of reactions either via well-defined

user-interfaces like Morpheus [49] or direct implementation

into the source code.

2.1.3 Cellular processes
In an agent-based approach the processes occuring inside

a cell can naturally be described by giving the agents the

required set of functions. Each framework mentioned in

Table 1 implements proliferation and cell-death

mechanisms as key components. However, predefined and

detailed cell-cycle routines such as utilized in PhysiCell [54]

are less common, but are important to consider if, e.g.,

external factors such as growth hormones affect the cell-

cycle [69]. In addition, internal chemicals may be released

upon cell death. In order to model developmental processes

such as embryogenesis, the framework needs to support cell-

differentiation with dynamic modifications of the phenotype.

TABLE 1 Comparison of CABMFs in alphabetical order with respect to implementations of spatial representation, dimension, intra- and extracellular processes
and cell-cell forces (Supplementary Table S1).

Framework Spatial representation and
dimension

Intracellular Extracellular Cell-cell forces

BSim off-lattice, Arbitrary Meshes 3D ODEs PDEs, Molecule-Agents Micro-Scale Meshing and
Collision Detection

Chaste CPM, off-lattice, CA, Vertex-Model
2D + 3D

ODEs, SBML RD PDEs, SBML custom force laws

CompuCell3D CPM on regular lattice 2D + 3D ODEs, SBML, PBPK s RD PDEs, SBML, PBPK s force terms via CPM
Hamiltonian

EPISIM Off-lattice, hexagonal 2D + 3D ODEs, SBML SBML spherical cell potentials

Morpheus CPM on regular lattice 2D + 3D ODEs, SBML RD PDEs, CA lattice ODEs, finite
state gradient-based

force terms via CPM
Hamiltonian

MultiCellSim CA + Brownian motion Secretion and uptake RD PDEs –

PhysiCell Off-lattice 2D + 3D SBML, Boolean Networks, Diffusion
Flux Balance Analysis

BioFVM Reaction Kinetics Spheres with Potential

TiSim/CellSys Off-lattice 2D + 3D ODEs, SBML diffusion + advection frictional, elastic and
stochastic force terms

VirtualLeaf Vertex model 2D ODEs – polygonal finite elements
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Cell polarity can play an important role in many phenomena

such as in ciliary rootlets in planarian epidermis [51]. Many

frameworks like CompuCell3D, Chaste, Morpheus,

VirtualLeaf support this feature. The geometry of the cell

includes its spatial representation together with mechanical

features such as adhesion and repulsion. PhysiCell utilize

spheroid/ellipsoid cellular geometries, meaning each cell is

represented by a sphere or ellipsoid and a corresponding

potential. Further, adhesion plays an important role in cell-

cell interactions and communication. Lattice-free frameworks

often model it by choosing a particular form of interaction

potential. One sophisticated example is the experimental

Johnson-Kendall-Roberts (JKR) potential [70], which was

derived from the Hertz contact model [71]. It also models

cell separation and is implemented by CellSys. Other

frameworks that implement a CPM treat adhesion via

interaction terms in its Hamiltonian Formulation [72]. In

the context of vertex models, force potentials can also be

utilized although the implementation is often more complex.

All of the above ABMs are able to model stochastic cell

migration, excluding VirtualLeaf since almost all plant cells

are non-motile. Collectively arising forces and friction which

can play an important role in early embryonic development

[73] may be harder to simulate if the geometry of the cells is

solely implemented as spheroid/ellipsoid. For frameworks

such as PhysiCell and TiSim/CellSys who additionally do

not support polarity, modeling of force-mitigated spatial

effects is difficult. Chemotaxis is a key concept in cell-

sorting [74] and can be implemented by any framework

that supports migration and can calculate reactant

gradients. All of the presented frameworks can capture

intracellular reactions by using ODEs ignoring the internal

spatial structure of the cells; different reaction compartments

can be easily introduced by coupling of ODEs. Some (e.g.,

Chaste, EPISIM) can also handle intracellular stochastic

reactions, using the Gillespie algorithm [75].

2.2 Implementational details

2.2.1 Development, standards and features
Development and design of efficient algorithms and their

implementation require knowledge in software engineering and

in writing maintainable code, as these frameworks are usually

developed by teams rather than by individuals and consist of

many thousands of lines of code. The Chaste framework was one

of the first projects to follow agile coding principles and other

best-practice workflows such as rigorous unit-testing [76]. All

presented CABMFs are written in C++ which together with the C

and Fortran language have historically served as the de facto

languages for high-performance software development. In

addition to CABMFs, researchers have over the last two

decades developed internationally recognized formats to

seamlessly share model details (e.g., SMBL). This is utilized in

Chaste, CompuCell3D, Morpheus and PhysiCell4 and allows for

rapid model development, implementation and comparison to

classical ODE and PDE solvers. CompuCell3D is also able to

model physiologically based pharmacokinetics (PBPKs).

Additionally, many frameworks come with dedicated

[sometimes graphical user interfaces (GUIs)] tools for

configuration, analysis, batch-processing, visualization and

other workflow-aiding features which are valuable additions.

In this regard, EPISIM is special as it utilizes the popular

COPASI [77] and Mason [78] software and plugins for the

eclipse code editor [79] to build the application.

3 Studying pattern formation with
agent-based models

3.1 Applications

Pattern formation in cellular biological systems can occur via

self-assembly or self-organization and ABMs have been applied

to investigate both aspects. Chaste was used to study cell

migration in the crypt [80]. Furthermore, CompuCell3D

provided examples for self-organization in work on

polarization [81] and studies of physical forces [82] in

migrating cells. Morpheus was used to describe pattern

formations in the telencephalon of adult zebrafish [83] and

was also used to study growth of the Drosophila wing via cell

recruitment [84]. PhysiCell recently provided insights to

formation of patterns in tumour spheroids [56]. Pattern

formation in dicot leaves was modeled using VirtualLeaf [85].

ABMs allow researchers to examine complicated models which

would otherwise be hard to study and interpret with classical

PDEs.

Figure 1 shows results of a multi-scale model using PhysiCell

[54]. We can observe that the pattern changes as the number of

patterning cells (type I) increases. This simple example shows,

how to readily formulate and explore models in an ABMmindset

- by increasing the cell number in this case. Constructing a

corresponding PDE model is much harder and not uniquely

defined.

3.2 Techniques and challenges

CABMFs allow researchers to investigate biological systems

on the cellular level with the option to implement many details,

with the downside of substantial computational cost. To combat

this issue, all presented frameworks are of multi-scale nature.

4 Via an addon libroadrunner and only for intracellular reactions.
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The relevant time- and length-scales are identified and the

corresponding sub-processes are modeled and updated

according to their scales. This can greatly improve

performance as for example diffusion-driven processes tend to

be much faster than cell migrational or phenotypical processes

[86]. Other techniques to improve performance are efficient

O(Ncells) implementations of algorithms [87] to calculate

direct cell-cell interaction partners [], spreading the

computational load over multiple processes via

multiprocessing (for example via OpenMP [88]) or on

specialized devices such as solving PDEs on a graphics

processing unit (GPU) [89]. Due to the stochastic nature of

the ABM simulations, appropriate statistical methods need to be

applied, which is often challenged by the fact that transient

developmental processes are studied not necessarily reaching a

stationary state. Analysis of the simulation and comparison with

experimental data requires the definition of precise features

which are extracted from the simulation results. It is

important to define clear goals and questions upfront, as this

will guide the process of feature extraction and dimensional

reduction. To this end machine learning techniques are

becoming more and more popular for analysis of ABM results

FIGURE 1
We implemented a RD system (see also Supplementary Equation SB1-SB4–Equations) in an ABM to showcase results. The simulation contains
two distinct cell types, which are bothmotile and initially randomly distributed. Cell type I (blue-shaded, white border) obey reaction equations given
by a substrate-depletion system [36] and are colored by their internal concentration of the activator. Cell type II (orange) is smaller than cell type I and
is chemotactically attracted by the activator which is secreted by cell type I. The background displays the density profile of the secreted activator
molecule (yellow: high density, blue: low density). The number of cells I is increased from (A–D) (256, 484, 1,024, 2,025), while the number of cells II
remains fixed to 3,000. Cell death reduces the overall number of agents. The pictures show the final state of the simulation after reaching (up to
statistical fluctuations) a steady-state. The variations in cell number alone lead to different emerging patterns. While these results may be obtainable
by a modified purely PDE-based approach, they are much easier to interpret and develop in an ABM. The simulations were carried out using
PhysiCell [54].
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[90, 91]. Given current advancements in machine learning,

researchers are hopeful that image classification of patterns

and self-organizing systems can get more automated in the

future [90, 92]. The authors of TiSim/CellSys have explicitly

suggested an image-to-model workflow [93]. Neural networks

showed promise in partly replacing analysis procedures [94].

Other machine learning techniques can also be used to determine

rules for agents and calibrate the model [95]. Auto encoders [96]

may provide a way to obtain a dimensionally reduced

representation of complex ABM simulation results. Due to the

mechanistic and “law-driven” nature of ABMs, often multiple

unknown parameters need to be determined or estimated from

data. Parameters can be estimated by comparing features

extracted from experimental data and from simulation results,

which is already a substantial effort. However, this process will

usually yield uncertainties, which need to be quantified, as it is

not sufficient to evaluate the model locally in parameter space

using a sometimes arbitrarily chosen parameter set. In order to

focus on the relevant parameters, sensitivity analysis is an

important tool, which can also be used for model reduction

[15]. Due to highly integrated nature of ABMs sensitivity analysis

is demanding and incorporates substantial computational costs

[97]. Consequently, it is often only possible to arrive at qualitative

statements for complex ABM simulations.

4 Discussion

This review introduced the concepts of agent-based models

in cellular systems. We compared different frameworks with

respect to their conceptual and implementational differences.

To date, a large number of different agent-based model

frameworks with different strengths and weaknesses exist

and are openly available. The multitude of options is a clear

indication for the overall interest in the subject. ABMs provide a

unique tool to integrate combinations of processes and study

their respective dynamics. Even for the exploration of systems

that lack sufficient data, ABMs can be used as they can be

developed initially with rather simplified rule sets, by means of

which researchers can generate hypotheses, which can in turn

guide the design of laboratory experiments. By this cycle of

experimental and computational methods, the model and the

experiments can be improved and finally increase the

conceptual knowledge about the system. Due to this, it is

important to understand the challenges of ABMs and their

limitations. ABMs can be seen as a mapping of specific rules to

spatial configurations. This mapping is non-unique, and the

question arises, how the results of the ABM depend on the set of

rules and the used parameters. How are the values (or distributions)

of the parameters estimated? How does the uncertainty in the

system parameters affect the predictions of the simulations? In

particular, when analyzing the (often stochastic) results of a

simulation, one needs to quantify the influence of the parameter

uncertainty which is a considerable challenge. Besides these

questions and challenges it can be expected that ABMs are

quickly becoming mainstream tools in biology.
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